
Design Checklist
11/10/03

 DRAFT

1

DESIGN CHECKLISTS

1.0 GENERAL

9 Does the design trace to the requirements?

9 Have any unnecessary requirements been added?

9 Does the design satisfy the requirements?

9 Are all software components independent?

9 Have all external interfaces been defined?

9 Is the data structure consistent with the information domain?

9 Do data structures support the logical data architecture access
and distribution requirements?

9 Is the design modular?

9 Do software components support the logical architecture user
access needs?

9 Is the logical complexity reasonable?

9 Are all algorithms logic correct and produce the desired effect?

9 Are all error and boundary conditions defined?

9 Is compound logic minimized?

9 Is the design amenable to the implementation language?

9 Have language dependencies been minimized?

9 Have all external interfaces been defined?

9 Have all internal interfaces been defined?

9 Have any new PVCS items been identified?

9 Are the system components functionally independent?

9 Is the overall design factored (i.e. top level modules decide
program flow; bottom level modules perform I/O and computational
work)?

9 Has reuse of existing materials been considered?

9 Has component usability been considered?

9 Has memory utilization been estimated and found acceptable?

9 Has performance been estimated and found acceptable?

9 Is the user interface usable and consistent throughout the
software?

9 Has software maintainability been considered?

9 Has any prototyping been performed?

9 If incremental development is planned, is the “build plan”
reasonable?

Design Checklist
11/10/03

 DRAFT

2

2.0 CLASSES

9 Are the class diagrams and the class specifications consistent
with each other (class names, member functions)?

9 Are the relationships between classes clear from the class
diagrams?

9 re the classes complete? Consider both attributes (data members)
and interfaces.

9 Do class names, method names, and attribute names (data members)
conform to the established standard?

Does each class specification include:

9 a clear description of the class purpose?

9 a general description of all necessary class data members
(attributes)?

9 name and description of public class member functions?

9 a list of messages generated by the class (methods [class and
function name] called in other classes by this class)?

9 Are the classes appropriately independent of each other? [This
does not preclude composition (has-a) and inheritance (is-a).]

9 Does the design exhibit a proper level of Modularity?

9 Is each class's purpose clear and complete? Correct? Concise?

9 Does the program do one thing well, not too many things? Is the
program coherent?

9 Does each class do one thing well, not too many things? Is each
class coherent?

9 Is a class doing anything it shouldn't?

9 Are the new classes re-usable?

9 Do classes provide Encapsulation of data and methods?

9 Do classes exhibit proper Information Hiding?

Design Checklist
11/10/03

 DRAFT

3

3.0 INTERFACE AND HIGH-LEVEL DESIGN REVIEWS

Public

9 Is the design fully implementable?

9 Is the design modular?

9 Has re-use of appropriate existing materials been considered?

9 Has system maintainability been considered?

9 Have all external interfaces been defined?

9 Are the system components functionally independent?

9 Is the overall design factored (i.e. top level modules decide
program flow; bottom level modules perform I/O and computational
work)?

9 Has component [used to say "system"] usability been considered?

9 Have all internal interfaces been defined?

9 Do data structures support the logical data architecture access
and distribution requirement?

9 Do system components support the logical process architecture user
access needs?

9 Does the implementation architecture support the organizational,
geographic, processing, data access, communication, and support
requirements of the proposed design?

9 Does the interface design trace to the high-level design?

9 Is the interface design consistent with the high-level design?

Private

9 Does the design trace to the requirements specification?

9 Have any unnecessary requirements been added?

9 Does the design satisfy all allocated software requirements?

9 Has performance been estimated and found acceptable?

9 Has memory utilization been estimated and found acceptable?

9 Have all new techniques been successfully prototyped?

9 Are the ABC charts and the class specs consistent with each other?

9 Are the classes complete? Consider both attributes (data members)
and interfaces.

9 Are the classes appropriately independent of each other? This
does not preclude composition (has-a) and inheritance (is-a).
Modularity.

9 Is each class's purpose clear and complete? Correct? Concise?

9 Does the program do one thing well, not too many things? Is the

Design Checklist
11/10/03

 DRAFT

4

program coherent?
9 Does each class do one thing well, not too many things? Is each

class coherent?
9 Is the class doing anything it shouldn't?

9 Are we missing any re-use opportunity? Are we re-inventing the
wheel?

9 Are the new classes re-usable?

9 Encapsulation.

9 Information hiding.

Design Checklist
11/10/03

 DRAFT

5

4.0 INTERFACE DESIGN REVIEWS

Public

9 Is the design fully implementable?

9 Is the design modular?

9 Has re-use of appropriate existing materials been considered?

9 Has system maintainability been considered?

9 Have all external interfaces been defined?

9 Are the system components functionally independent?

9 Is the overall design factored (i.e. top level modules decide
program flow; bottom level modules perform I/O and computational
work)?

9 Has component [used to say "system"] usability been considered?

9 Have all internal interfaces been defined?

Private

9 Has performance been estimated and found acceptable?

9 Has memory utilization been estimated and found acceptable?

9 6. H14. Have all new techniques been successfully prototyped?

Design Checklist
11/10/03

 DRAFT

6

5.0 DETAILED DESIGN REVIEWS

Public

greater emphasis

9 Is the design fully implementable?

 9 Has information hiding been fully utilized?

 9 Is the logical complexity reasonable?

 9 Have [language/]operating system dependencies been minimized?

 9 Are algorithms logically correct; do they produce the desired
effect?

 9 Have all error and boundary conditions been satisfied?
 - appropriate error reporting techniques (return code

vs.exception).
 - error handling (catch and handle, catch and re-throw, catch

and throw new, let pass).
 - error logging.
 9 Do candidate software materials [what we decide are utilities]

adhere to software standards?
 9 Is each candidate software component [what we decide are

utilities] well documented?
 9 Are candidate re-usable software components [what we decide are

utilities] structured to be maintainable?
9 Is the implementation of the candiadte software components [what

we decide are utilities] efficient?
9 Do the candidate re-usable software components perform their

advertized functions correctly and completely? [could apply to
both to our deciding what are utilities as well as what COTS and
freeware we should use]

9 check for missing/extra #includes.

9 check for include guards.

9 check for missing/unused member data.

9 check for missing local declares (scope issues).

9 check for signed/unsigned integer types.

9 are header file prologues understandable?

9 STL iterators can never be zero (we can't see the internal
representation); we can neither assign zero to them nor test them
against zero.

9 delete does not zero the pointer; check for de-referencing deleted
pointers.

9 check for redundant pdl; factor such pdl out.

9 check for references on const scalar args (e.g. const int &arg1);
they are wasteful.

9 check for returning pointers or references to local variables
(bad!).

Design Checklist
11/10/03

 DRAFT

7

9 check for "overkill" (such as using an STL array when a small
simple array will readily do).

9 check for const correctness.

9 check that ints can't be > 32767 (signed) or 65535 (unsigned); use
longs where violations are possible.

9 no shorts (use ints).

lesser emphasis

9 Are the interfaces consistent with the interface interface design?

9 Is the design amenable to the implementation language?

9 Are structured programming constructs used throughout?

9 Is compound logic [if(f(x))] minimized?

9 Has inverse logic [nots] been eliminated, or at least minimized?

9 Are local data structures properly defined?

9 Has maintainability been considered?

9 Have all reasonable sources of re-usable components [COTS and
freeware] been explored?

Private

9 Does the detailed design trace to the interface and high-level
designs?

9 Does the design satisfy all allocated software requirements?

9 Has performance been estimated and found acceptable?

9 Have all categories of potentially re-usable materials been
identified? [could apply to both to our deciding what are
utilities as well as what COTS and freeware we should use]

9 Have criteria been established for the selection of candidate
re-usable materials? [could apply to both to our deciding what
are utilities as well as what COTS and freeware we should use]

